

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0258 of 26 November 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

SIKLA Drop-In Anchor AN / AN ES

Fastener for use in concrete for redundant non-structural systems

Sikla Holding GmbH Kornstraße 4 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 1

19 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601, Edition 06/2018

ETA-10/0258 issued on 2 August 2017

European Technical Assessment ETA-10/0258 English translation prepared by DIBt

Page 2 of 19 | 26 November 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 26 November 2021

Specific Part

1 Technical description of the product

The SIKLA Drop-in anchor AN / AN ES is a fastener made of galvanized or stainless steel which is placed into a drilled hole and anchored by deformation-controlled expansion.

The fixture shall be anchored with a fastening screw or threaded rod according to Annex A2.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C5

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for all load directions and modes of failure for simplified design	See Annex B3, C1 to C4
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-10/0258 English translation prepared by DIBt

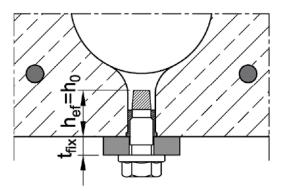
Page 4 of 19 | 26 November 2021

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 26 November 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Baderschneider

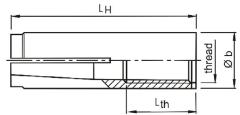

SIKLA Drop-i	n Anchor AN / AN ES					
	Anchor	sizes a	and variations			
Drop-in Ancho	r AN (<u>withou</u> t shoulder)		Drop-in Anchor AN ES (with shoulder)			
Anchorage dep	oth $h_{ef} \ge 30 \text{ mm}$ (zinc plated, A4	or HCR)				
AN M6x30		O	AN ES M6x30		0	
AN M8x30 AN M8x40			AN ES M8x30 AN ES M8x40		٢	
AN M10x40 AN M12x50 AN M16x65		0	AN ES M10x30 (zinc plated) AN ES M10x40 AN ES M12x50			
			AN ES M16x65			
Drop-in Ancho	r AN ES (<u>with</u> shoulder)					
Anchorage dep AN ES M6x25 AN ES M8x25 AN ES M10x25 AN ES M12x25	oth h _{ef} = 25 mm (zinc plated)	٢				
Installation site	uation AN / AN ES in concre			ation AN ES in pre llow core slabs fo		
				e L	c	
		w	/ e ≤ 4,2 = core width			
		e d _b h _{ef} t _{fix} C	= web thicknes	ess ≥35mm (or ≥ 30 epth fixture	mm, see Annex C3)	
SIKLA Drop-	in Anchor AN / AN ES					
Product descri Anchor sizes an	ption Id variations / Installation situation	ns			Annex A1	

Part	Designation	Steel, zinc plated	Stainless steel A4	High corrosion		
rait	Designation			resistant steel HCR		
1	Anchor sleeve	Cold formed or machining steel, galvanized, EN ISO 4042:2018	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, EN ISO 3506:2020	Stainless steel, 1.4529, 1.4565, EN 10088:2014, EN ISO 3506:2020		
2	Cone	Cold formed or machining steel	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014			

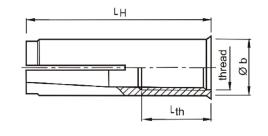
Requirements on the fastening screw or the threaded rod and nut according to the engineering documents:

- Minimum screw-in depth L_{sdmin} see Table B1 and B2
- The length of screw or the threaded rod shall be determined depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum screw-in depth) and the minimum screw-in depth L_{sdmin}.
- A₅ > 8 % Ductility
- Materials
 - Steel, zinc plated, property class 4.6 / 4.8 / 5.6 / 5.8 or 8.8 according to EN ISO 898-1:2013 or EN ISO 898-2:2012
 - Stainless steel A4 or high corrosion resistant steel HCR, property class 70 or 80 according to EN ISO 3506:2020

SIKLA Drop-in Anchor AN / AN ES


Product description Materials

Annex A2



Anchor sleeve

Anchor version without shoulder (AN)

Anchor version with shoulder (AN ES)

Cone

M6x25 to M12x25, M6x30 and M10x30

Table A2: Dimensions and marking

Marking: see Table A2

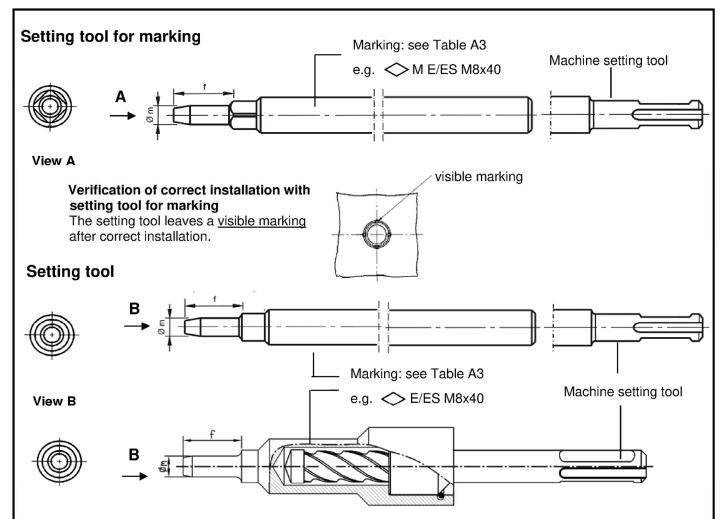
- identifying mark of manufacturing plant
- E anchor identity (version without shoulder)
- ES anchor identity (version with shoulder)
- M8 size of thread
- 40 anchorage depth

additional marking

- A4 stainless steel
- HCR high corrosion resistant steel

Anchor	An	chor s	sleeve)		Marking			
size	thread	Øb	Lн	Lth	Version AN (without sleeve)	Version AN ES (with sleeve)	alternative	Cone	
M6x25	M6	8	25	12	-	🗢 ES M6x25	-		
M6x30	M6	8	30	13	♦ E M6x30	S ES M6x30	♦ E M6		
M8x25	M8	10	25	12	-	ES M8x25	-		
M8x30	M8	10	30	13	♦ E M8x30	ES M8x30	E M8		
M8x40	M8	10	40	20	♦ E M8x40	🗢 ES M8x40	⇐ M8x40		
M10x25	M10	12	25	12	-	ES M10x25	-		
M10x30	M10	12	30	12	-	ES M10x30	E M10x30		
M10x40	M10	12	40	15	→ E M10x40	ES M10x40	⇐ E M10		
M12x25	M12	15	25	12	-	◇ ES M12x25	-		
M12x50	M12	15	50	18	♦ E M12x50	ES M12x50	♦ E M12		
M16x65	M16	19,7	65	23	♦ E M16x65	ES M16x65	♦ E M16		

Dimensions in mm


SIKLA Drop-in Anchor AN / AN ES

Product description

Dimensions and Marking

Annex A3

Table A3: Dimensions and marking of setting tools

Anchor	Øm	f	Setting tool for marking		Setting	tool
size	9 m	•	Marking	alternative	Marking	alternative
M6x25	4,9	17	→ M ES M6x25	-	⇒ ES M6x25	-
M6x30	4,9	17	→ M E/ES M6x30	◇ M E M6	E/ES M6x30	🗢 E M6
M8x25	6,4	17	→ M ES M8x25	-	⇒ ES M8x25	-
M8x30	6,4	18	→ M E/ES M8x30	◇ M E M8	E/ES M8x30	◇ E M8
M8x40	6,4	28	→ M E/ES M8x40	→ M E M8x40	⇒ E/ES M8x40	
M10x25	8,0	18	→ M ES M10x25	-		-
M10x30	8,0	18	→ M ES M10x30	→ M E M10x30		→ E M10x30
M10x40	8,0	24	→ M E/ES M10x40	→ M E M10		→ E M10
M12x25	10,0	15,5	→ M ES M12x25	-		-
M12x50	10,0	30	→ M E/ES M12x50	→ M E M12		
M16x65	13,5	36	➢ M E/ES M16x65	→ M E M16		→ E M16

Dimensions in mm

SIKLA Drop-in Anchor AN / AN ES

Product description

Setting tools / Dimensions and marking of setting tools

Annex A4

Page 9 of European Technical Assessment ETA-10/0258 of 26 November 2021

English translation prepared by DIBt

		Anchorage depth h _{ef} ≥ 30 mm								
Drop-in Anchor AN / AN ES	M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65			
Steel, zinc plated				✓						
Stainless steel A4 and high corrosion resistant steel HCR		~		-		~				
Static and quasi-static loads				✓						
Fire exposure				✓						
Cracked and uncracked concrete				√						
Solid concrete C20/25 to C50/60				✓						
Drop-in Anchor AN ES	An	chorage o	lepth h _{ef} :	= 25 mm						
Diop-III Alicitor AN ES	M6x25	M8v2	5 M10v	25 M12v	25					

Drop in Anchor AN ES	Anchorage depth hef = 25 mm					
Drop-in Anchor AN ES	M6x25	M8x25	M10x25	M12x25		
Steel, zinc plated		,	1			
Stainless steel A4 and high corrosion resistant steel HCR			-			
Static and quasi-static loads		١	1			
Fire exposure (solid concrete, C20/25 to C50/60)		•	/			
Cracked and uncracked concrete		•	/			
Solid concrete C12/15 to C50/60	✓					
Precast pre-stressed hollow core slabs C30/37 to C50/60		•	/			

Use only for redundant, non-structural systems!

Base materials:

• Compacted, reinforced or unreinforced normal weight concrete (without fibers) acc. to EN 206:2013 + A1:2016

Use conditions:

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

SIKLA Drop-in Anchor AN / AN ES

Intended use Specifications Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- The strength class and the length of the fastening screw or threaded rod shall be defined by the designing engineer
- Anchorages are designed acc. to EN 1992-4:2018 (if necessary in connection with TR 055, Edition February 2018)

Installation:

- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools
- Drill hole by hammer drilling or vacuum drilling

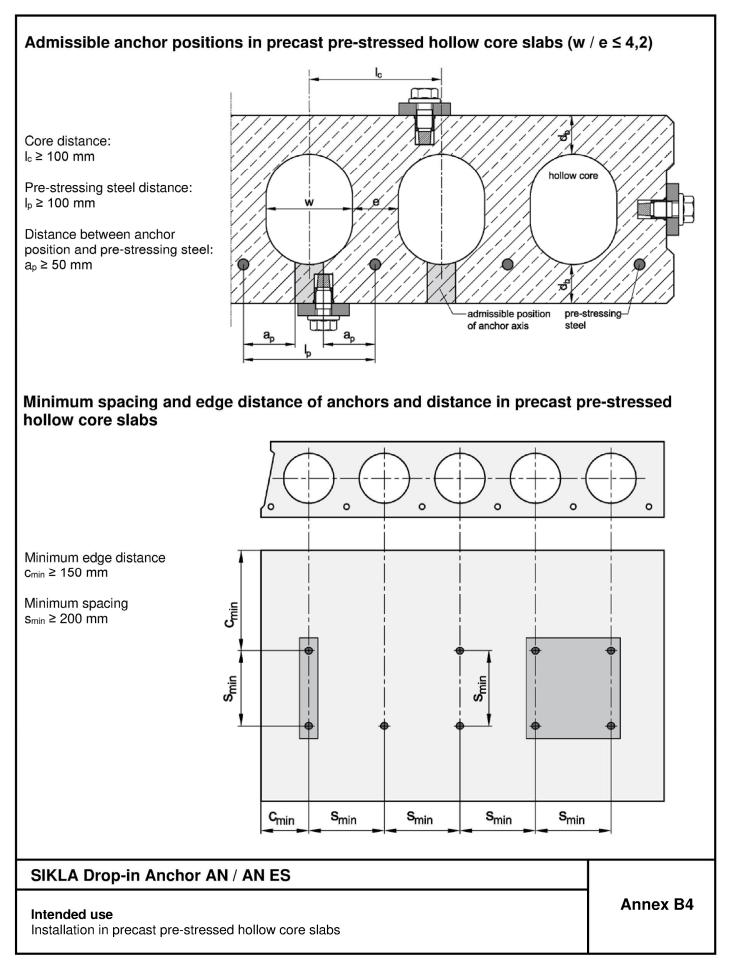
SIKLA Drop-in Anchor AN / AN ES

Intended use Specifications Annex B2

Deutsches Institut für Bautechnik

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x65
Depth of drill hole E	h0 =	[mm]	30	30	40	30	40	50	65
Depth of drill hole ES	h₀ ≥	[mm]	30	30	40	30	40	50	65
Drill hole diameter	d ₀ =	[mm]	8	10	10	12	12	15	20
Cutting diameter of drill bit	d _{cut} ≤	[mm]	8,45	10,45	10,45	12,5	12,5	15,5	20,55
Maximum installation torque	T _{inst} ≤	[Nm]	4	8	8	15	15	35	60
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	9	12	12	14	18
Thread length	L_{th}	[mm]	13	13	20	12	15	18	23
Minimum screw-in depth	L _{sdmin}	[mm]	7	9	9	10	11	13	18
Steel, zinc plated									
Minimum thickness of member	h _{min}	[mm]	100	100	100	120	120	130	160
Minimum spacing	Smin	[mm]	55	60	80	100	100	120	150
Minimum distance	Cmin	[mm]	95	95	95	115	135	165	200
Stainless steel A4, HCR									
Minimum thickness of member	h _{min}	[mm]	100	100	100	-	130	140	160
Minimum spacing	Smin	[mm]	50	60	80	-	100	120	150
Minimum distance	Cmin	[mm]	80	95	95	-	135	165	200

Table B2: Installation parameters for hef = 25 mm


Anchor size			M6x25	M8x25	M10x25	M12x25	
Depth of drill hole	h₀≥	[mm]	25	25	25	25	
Drill hole diameter	d ₀ =	[mm]	8	10	12	15	
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	8,45	10,45	12,5	15,5	
Maximum installation torque	T _{inst} ≤	[Nm]	4	8	15	35	
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	9	12	14	
Thread length	L _{th}	[mm]	12	12	12	12	
Minimum screw-in depth	L _{sdmin}	[mm]	6	8	10	12	
Minimum thickness of member	h _{min,1}	[mm]	80				
Minimum spacing	Smin	[mm]	30	70	70	100	
Minimum edge distance	Cmin	[mm]	60	100	100	130	
Standard thickness of member	h _{min,2}	[mm]		1(00		
Minimum spacing	Smin	[mm]	30	50	60	100	
Minimum edge distance	Cmin	[mm]	60	100	100	110	
Installation in precast pre-stressed hollo	ow core s	labs C3	0/37 to C50/6	60			
Spacing	Smin	[mm]	200				
Edge distance	Cmin	[mm]		15	50		

SIKLA Drop-in Anchor AN / AN ES

Installation parameters

Annex B3

Inst	nstallation instructions for solid concrete slabs								
1	90°	Drill hole perpendicular to concrete surface. Using vacuum drill bit proceed with step 3.							
2		Blow out dust. Alternatively, vacuum clean down to the thole.	pottom of the						
3		Drive in anchor.							
4		Drive in cone by using setting tool.							
5		Shoulder of setting tool must fit on anchor rim.							
6	Tinst	Turn in screw or threaded rod with nut, observe minimur (see Annex B3). Apply installation torque T _{inst} .	n screw-in depth						
SIKI	LA Drop-in Anchor AN / A	N ES							
Inten	ded use		Annex B5						

Installation instructions for solid concrete slabs

Inst	nstallation instructions for precast pre-stressed hollow core slabs								
1		Search for the position of the reinforcement.							
2		Mark the position of the pre-stressing steel and search for the o the pre-stressing steel.	ther position of						
3		Mark the positions of next pre-stressing steel.							
4	≥50mm ≥100mm	Drill hole while maintaining the required distances.							
5		Blow out dust. Alternatively vacuum clean down to the bottom o	f the hole.						
6		Drive in anchor.							
7		Drive in cone by using setting tool.							
8	Shoulder of setting tool must fit on anchor rim.								
9	9 Turn in screw or threaded rod with nut, observe the minimum screw-in depth (see Annex B3). Apply installation torque T _{inst}								
SIKI	A Drop-in Anchor	AN / AN ES							
	ntended use Installation instructions for precast pre-stressed hollow core slabs								

Deutsches Institut für Bautechnik

Anchor size			M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x6
Installation factor	γinst	[-]				1,0			
Load in any direction			_					_	
Characteristic resistance in concrete C20/25 to C50/60	F⁰ _{Rk}	[kN]	3	5	6	6	6	6	16
Partial factor	γм ¹⁾	[-]	1,8	2,	16	2,1	2,16	1,8	1,8
Spacing	Scr	[mm]	130	180	210	230	170	170	400
Edge distance	Ccr	[mm]	65	90	105	115	85	85	200
Shear load with lever arm, stee	I zinc plate	ed							
Characteristic resistance (property class 4.6)	M ⁰ Rk,s	[Nm]	6,1	15	15	30	30	52	133
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]				1,67			
Characteristic resistance (property class 4.8)	M ⁰ Rk,s	[Nm]	6,1	15	15	30	30	52	133
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,25			
Characteristic resistance (property class 5.6)	M ⁰ Rk,s	[Nm]	7,6	19	19	37	37	65	166
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]	1,67						
Characteristic resistance (property class 5.8)	M ⁰ Rk,s	[Nm]	7,6	19	19	37	37	65	166
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,25			
Characteristic resistance (property class 8.8)	M ⁰ Rk,s	[Nm]	12	30	30	59	60	105	266
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,25			
Shear load with lever arm, stair	nless steel	A4 / H0	CR						
Characteristic resistance (Property class 70)	$M^0_{Rk,s}$	[Nm]	11	26	26	_2)	52	92	233
Partial factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]				1,56			
Characteristic resistance (Property class 80)	M ⁰ Rk,s	[Nm]	12	30	30	_2)	60	105	266
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]				1,33			

SIKLA Drop-in Anchor AN / AN ES

Performance

Characteristic resistance for $h_{ef} \ge 30 \text{ mm}$ in solid concrete

Anchor size			M6x25	M8x25	M10x25	M12x25	
Installation factor	γinst	[-]		1	,0		
Load in any direction							
Characteristic resistance in concrete C12/15 and C16/20	F⁰ _{Rk}	[kN]	2,5	2,5	3,5	3,5	
Characteristic resistance in concrete C20/25 to C50/60	F⁰ _{Rk}	[kN]	3,5	4,0	4,5	4,5	
Partial factor	$\gamma_{M^{1)}}$	[-]		1	,5		
Spacing	Scr	[mm]	75	75	75	75	
Edge distance	Ccr	[mm]	38	38	38	38	
Shear load with lever arm				·		·	
Characteristic resistance (property class 4.6)	M ⁰ Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]	1,67				
Characteristic resistance (property class 4.8)	M ⁰ Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]		1,	25		
Characteristic resistance (property class 5.6)	$M^{0}_{Rk,s}$	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]		1,	67		
Characteristic resistance (property class 5.8)	M ⁰ Rk,s	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]	1,25				
Characteristic resistance (property class 8.8)	M ⁰ Rk,s	[Nm]	12	30	60	105	
Partial factor	$\gamma_{Ms}{}^{1)}$	[-]		1,	,25		

¹⁾ In absence of other national regulations

SIKLA Drop-in Anchor AN / AN ES

Performance

Characteristic resistance for $h_{ef} = 25 \text{ mm}$ in solid concrete

Anchor size			M6x25	M8x25	M10x25	M12x25	
Installation factor	γ_{inst}	[-]		1	,0		
Load in any direction							
Flange thickness	db	[mm]		≥ 35	(30) ¹⁾		
Characteristic resistance in precast pre-stressed hollow core slabs C30/37 to C50/60	F ⁰ _{Rk}	[kN]	3,5	4,0	4,5	4,5	
Partial factor	$\gamma_{M}^{2)}$	[-]		1	,5		
Spacing	Scr	[mm]	200				
Edge distance	Ccr	[mm]	150				
Shear load with lever arm							
Characteristic resistance (property class 4.6)	M ⁰ Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\rm Ms}{}^{2)}$	[-]		1,	67		
Characteristic resistance (property class 4.8)	M ⁰ Rk,s	[Nm]	6,1	15	30	52	
Partial factor	$\gamma_{\rm Ms}{}^{2)}$	[-]		1,	25		
Characteristic resistance (property class 5.6)	M ⁰ Rk,s	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\rm Ms}{}^{2)}$	[-]	1,67				
Characteristic resistance (property class 5.8)	$M^0_{Rk,s}$	[Nm]	7,6	19	37	65	
Partial factor	$\gamma_{\text{Ms}}{}^{2)}$	[-]		1,	25		
Characteristic resistance (property class 8.8)	M ⁰ Rk,s	[Nm]	12	30	60	105	
Partial factor	$\gamma {\rm Ms}^{2)}$	[-]		1,	25		

¹⁾ The anchor may be set in a flange thickness of 30 mm with identical characteristic loads, if the borehole cuts no hollow core ²⁾ In absence of other national regulations

SIKLA Drop-in Anchor AN / AN ES

Performance

Characteristic resistance for hef = 25 mm in precast pre-stressed hollow core slabs

Ancho	r size				M6x30	M8x30	M8x40	M10x30	M10x40	M12x50	M16x6
Fire res tance c		Load in any direc	tion								
Property class 4.6	R 30	Characteristic resistance		[kN]	0,4	0,6	0,6	0,9	0,9	1,5	3,1
	R 60		F⁰ _{Rk,fi}	[kN]	0,35	0,6	0,6	0,8	0,8	1,3	2,4
Prop	R 90		⊏ °Rk,fi	[kN]	0,3	0,6	0,6	0,6	0,6	1,1	2,0
<u> </u>	R 120			[kN]	0,25	0,5	0,5	0,5	0,5	0,8	1,6
~ ~	R 30			[kN]	0,4	0,9	1,1	0,9	1,5	1,5	4,0
Property class 4.8	R 60	Characteristic	F ⁰ _{Rk,fi}	[kN]	0,35	0,9	0,9	0,9	1,5	1,5	4,0
Prop	R 90	resistance	⊢ °Rk,fi	[kN]	0,3	0,6	0,6	0,9	1,1	1,5	3,0
ΗО	R 120			[kN]	0,3	0,5	0,5	0,7	0,9	1,2	2,4
rty 5.6	R 30			[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
Property lass ≥ 5.	R 60	Characteristic	F⁰ _{Rk,fi}	[kN]	0,8	0,9	1,5	0,9	1,5	1,5	4,0
Propei class ≥	R 90	resistance	⊏ °Rk,fi	[kN]	0,4	0,9	0,9	0,9	1,5	1,5	3,7
C H	R 120			[kN]	0,3	0,5	0,5	0,7	1,0	1,2	2,4
	R 30	Characteristic resistance		[kN]	0,8	0,9	1,5	_1)	1,5	1,5	4,0
A4 /	R 60		F⁰ _{Rk,fi}	[kN]	0,8	0,9	1,5	_1)	1,5	1,5	4,0
HCR	R 90		і ык,п	[kN]	0,4	0,9	0,9	_1)	1,5	1,5	3,7
	R 120			[kN]	0,3	0,5	0,5	_1)	1,0	1,2	2,4
		Partial factor	γM,fi	[-]				1,0			
Steel z	inc plate	ed									
		Spacing	Scr,fi	[mm]	130	180	210	170	170	200	400
R 30 –	R 120	Edge distance	Ccr,fi	[mm]	65	90	105	85	85	100	200
		If the fire attack is f	rom more t	han or	ne side, th	ne edge o	distance	shall be	≥ 300 mr	n.	
Stainle	ss steel	A4, HCR									
		Spacing	Scr,fi	[mm]	130	180	210	_1)	170	200	400
R 30 –	R 120	Edge distance	C _{cr,fi}	[mm]	65	90	105	_1)	85	100	200
		If the fire attack is f	rom more t	han or	ne side, th	ne edge o	distance	shall be	≥ 300 mr	n.	
⁾ Anchor	version is	s not part of the ETA	rom more t	nan or	ie side, ti	ie eage (oistance	snali de	2 300 mr	n.	

Table C5: Characteristic values under fire exposure in solid concrete slabsC20/25 to C50/60 for $h_{ef} = 25 \text{ mm}$

Ancho	r size				M6x25	M8x25	M10x25	M12x25		
Fire resis- tance class										
9	R 30		F ⁰ Rk,fi	[kN]	0,4	0,6	0,6	0,6		
≥ 4.	R 60	Characteristic resistance		[kN]	0,35	0,6	0,6	0,6		
Property class ≥ 4.6	R 90			[kN]	0,3	0,6	0,6	0,6		
	R 120			[kN]	0,25	0,5	0,5	0,5		
		Partial factor	γM,fi	[-]	1,0					
		Spacing	Scr,fi	[mm]	100	100	100	100		
R 30 –	R 120	Edge distance	Ccr,fi	[mm]	50	50	50	50		
		If the fire attack is from	m more t	ie side, the edge distance shall be \geq 300 mm.						

SIKLA Drop-in Anchor AN / AN ES

Performance Characteristic values under fire exposure for h_{ef} = 25 mm